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LEVEL DENSITY FLUCTUATIONS
IN THE 1D HEISENBERG MODEL!

V.l.Inozemtsev, V.R.Manfrediz, L.Salasnich3

Spectral statistics are applied 10 study level density fluctuations in the
S = 1/2 quantum spin chains on a finite lattice under periodic boundary
conditions. The use of P(s) and As siatistical measures for selecting integrabie
cases of spin exchange interaction is discussed.

The investigation has been performed at the Laboratory of Theoretical Phy-
sics, JINR and Universita di Padova, Italy.
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l. Introduction

The problem of finding integrable models is of current interest in stu-
dies of various classical and quantal many-body systems. It is generally be-
lieved [1] that the most distinct sign of complete integrability is the exist-
ence of an appropriate set {/_ } of integrals of motion in involution which can

be used for dividing the whole phase space into subspaces with simple dyna-
mics. Apart from certain trivial examples, this procedure is extremely com-
plicated for quantum integrable systems since no quantum analog of clas-
sical Liouville theorem has yet been proved.
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When a certain physical model is considered, other criteria are usually
required to discover whether it is integrable or not due to the lack of general
analytical methods of constructing the integrals {/ , Yor proof of their absen-

ce. The formulation of these criteria based on numerical methods of inves-
tigation is relatively clear in classical mechanics [2 ]. Indeed, many nonin-
tegrable classical systems show chaotic behavior marked by instability
under variations of initial data and exponential divergence of nearby trajec-
tories whereas the motion of integrable systems is always confined to inva-
riant tori [3 ].

In quantum mechanics one cannot apply the classical concepts and met-
hods directly since the notion of trajectory is absent. Nevertheless, many
efforts have been made to establish the features of quantum systems which
reflect the qualitative difference in the behavior of their classical counter-
parts [4—6 ). Many schematic models [7—9 ] have shown that this diffe-
rence reveals itself in the properties of fluctuations in eigenvalue sequences.
The spectral statistics for the systems with underlying chaotic behavior
agree with the predictions of random matrix theory; by contrast, quantum
analogs of classically integrable systems display the characteristics of Pois-
son distribution.

This important observation leads us to hope that we may select the cases
of integrable quantum models or find arguments against integrability by
analyzing their discrete spectra.

In this note we attempt to investigate the quantum Heisenberg chains of
S = 1/2 spins on a finite 1D lattice by using two kinds of statistics, the nea-
rest-neighbor spacing distribution P(s) and the measure of spectral rigidity
A3(L). Unlike previous studies [7—9 ], there is no classical counterpart of

these systems at a fixed value of the spin. Hence they also enable us to check
the universality of quantum criterium mentioned above which has a suffi-
ciently strong analytic support only in the semiclassical limit [10].
However, as discussed in great detail in reference [11 | there are some
deviations for large values of L, in particular for A4(L). These are related to

a breakdown of universal when L becomes larger than a certain correlation
length L | ax- A semiclassical theory which accounts for these non-universal

departures has been developed by Berry {11 ], on the basis of Gutzwiller’s
periodic orbit theory [12 ). It not only gives the same results as the statistical
theories for L << L ..» butalso predicts the correct asymptotic behaviour for

L>> L ... where random matrix theories fail. For the spectral rigidity
A;(L) the semiclassical theory predicts asymptotic saturation both in the
regular and in the chaotic region.



2. The Integrability Prolbem
for the 1D Heisenberg Model

The magnetic properties of solids have long been studied by using the
lattice hamiltonian [13]
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runs over all pairs of sites <j,/ > and the strength of spin interaction is given
by exchange integrals {A(j)}. The set {A())} is usually chosen in such a way
as to satisfy periodic boundary conditions and quantities like free energy
should be calculated first for finite systems of N spins. The results of
interest for physical applications are obtained in the thermodynamical limit
as N—» o, -

The operators can be treated as 2" x 2" hermitian matrices with a com-
plicated structure defined by {A(j)}. The investigation of the possibilities of
their analytical diagonalization began with H.Bethe’s seminal paper [14 )
devoied to the eigenproblem for hamiltonian (1) in the case of nearest-
neighbor spin interaction,

h(])=‘,[6|jl,l +ale,N-l]' @

The solution can be descibed as follows. Let 10 > be a ferromagnetic
ground state with all spins aligned along z-axis,

N
10>=Q® (0) i
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where §, = 1 &; is 2x2 matrix of the spin operator located at a site j, the sum

The whole space of the spin lattice states with the dimension 2V is easily
divided into subspaces {Q2 A} With basis vectors In,...n, > of the form

M
In,...ny, > = [11:[1 s;l] 10>, 3

where Sk = Skx T iS4y turns kth spin downand 1 < n<n,..<n <N..

The matrix of (1) is block diagonal since exchange interaction conserves the
number of overturned spins M. The eigenstates are constructed as linear
superpositions of (3),
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According to Bethe’s empirical guess, the functions y (nl n M) are gi-

ven for the exchange (2) by symmetrized combinations of plane waves

M
expli Z k;”j . It shows that in this particular case there is no diffraction
ji=1
in the scattering of M simplest spin excitations. More than thirty years later
it was interpreted as the presence of hidden symmetry. The commutative
ring of N functionally independent operators, which includes the hamilto-
nian, was found within the framework of the transfer matrix method (151
In the last few years much attention has been paid to the generalization
of the Bethe result to cases of more complicated exchange. As has been
claimed in [16 ], integrability might also take place for interaction of nearest
and next-nearest spins given by

h(j) = J[aljl,l+aljl,N—l+'1 (6Ijl,2+ 6IjI,N—2)] &

at arbitrary values of the coupling A. The arguments of the author of
ref. [16], however, would seem to be quite insufficient. They were based
only on the treatment of two spin waves analogously to usual two-particles
scattering. The corresponding S matrix is, of course, scalar and obeys
Yang — Baxter equations [15] but it does not guarantee the absence of dif-
fraction if the number of interacting spin waves exceeds two. So far no ex-
plicit solution has been found even in the M = 3 sector at a certain nonzero
value of A, neither has it been possible to construct examples of integrals of
motion. The instability of properties of the ground state under variations of
A found numerically in [17] would tend rather to indicate the nonintegra-
bility of the model.

Another way to overcome the restriction to nearest-neighbor exchange
(2) is connected with the remarkable analogy between y (n 1on M) in (4) for
the Bethe case and wave functions of the M-particle problem on a continuous
line with pair interaction V(x) ~d(x) [18]. There are several integrable
many-particle systems of that type [19] and the most general ones corres-
pond to the two-body elliptic potential V(x) ~ p“’r wz(x), where pwl, is

w,

the Weierstrass elliptic function with two periods w,andiw, (‘”1 yw, € R) ,
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It has been proposed that precisely the same form of spin exchange
leads to integrable models on a 1D lattice if the real period of the p function
coincides with the number of lattice sites [20],

hi)=J oy, O)- D

As w, = 0, it gives the nearest-neighbor exchange (2) after proper re-

normalization of the coupling /. The complete commutative ring of integrals
of motion has not yet been constructed, but there are some examples of
these operators,

N

= %
Jjrk=

N
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where /,(a) = 9__%@ exp [— (j - I) ¢ (a)] , @ is an arbitrary para-

meter and the Weierstrass functions §(x), o(x) are expressed through g(x) as

Ex)=x"1+ } [x—z— ) (x)] dx, o(x) = xexp } (C(x) - x_l) dx|.
0 0

Although non-diffractive behavior has been established for the scatte-
ring of an arbitrary number of spin waves on a infinite lattice, the rigorous
proof of the integrability of the model (7) in the most important case of finite
N and w, has not yet been found.

To conclude this section, it is worth noting that a statement such as «the
quantum system is integrable» can be confirmed, at least in principle, by
direct analytic construction of integrals of motion. The contrary statement
evidently needs other criterium for its verification. If the concept of «quan-
tum chaos» is to some extent universal, it is natural to expect that discrete
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spectra of nonintegrable cases of (1) might display the peculiarities of ran-
dom matrix fluctuations. The possibility of applying this criterium is studied
in the best section for all three previously discussed forms of exchange inter-

action.

3. The Procedures and Results of Calculations

The dimension of matrices corresponding to (1) grows exponentially
with the number of interacting spins. To avoid the enormous consumption of
computer time and obtain a reasonable number of levels for statistical ana-
lysis, we chose for numerical procedures the M = 6 sector of the model on
the lattice with 12 sites. The total number of basis vectors (3) in the case is

sz = 924. The action of the hamiltonian (1) on these vectors is given by

M N-1
=13 h(nj—nk)—M Y hG)| |nye.ny) +
j=k Jj=1

N M
+ > h(ns—k) |"|"'"s-l""s+|""’M)‘ ®)
knn .n_ s=1
] M
The matrices with elements determined by (8) have been diagonalized
numerically by a standard routine {22 }. Most of their eigenvalues are doub-
le degenerated due to left-right symmetry in spreading spin excitations over
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Fig.1. The density of levels: (a) before (b) after the unfolding procedure for nearest-neighbor
exchange (2)
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the lattice. In fact, it is easy to show
that if 1y ) is an eigenvector of the
hamiltonian (1) of the type (4) with
some {w (nl...nM)}, then ly)=
= 2 1< n|...nMsN v (nlmnM> X

X In.n,,) Fil =N+1-n) also
obeys the eigenvalue condition with
the same energy. This kind of sym-
metry can be used, in principle, to
reduce the dimension of matrices ac-
companied, however, by a complica-
tion of their structure. An equiva-
lent procedure for obtaining the
specira with removed symmetry con-
sists of eliminating one element of
each pair of coinciding eigenvalues
obtained by diagonalization of the
hamiltonians using a total set of ba-
sis states (3).

The level densities are appro-
ximately of the Gaussian form
(Fig.1a) for all three forms of spin
interaction used in our calculations.
By performing the unfolding proce-
dure descibed in detail in ref. [21],
each spectrum has been mapped into
one with the quasiuniform level den-
sity (Fig.1b).

The nearest-neighbor spacings
were calculated and histogrammed
in units of mean spacing so as to
show the P(s) distribution for s < 4

Fig.2. The histograms of nearest-neighbor le-
vel spacings P(s): (a) the Bethe case (2); (b)
the elliptic exchange (7), w, = x (c) the case
of nearest and next-nearest spin interaction (6)
at A = ~1. The solid lines correspond to the
Poisson distribution normalized by the first
bins.
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¢Fig.2). As can be seen, there are
large fluctuations around the
Poissonian line, P(s) =
= Aexp(—s), A being determined
by the first bin, for both integrable
cases (a—b). In the last example
(2c), where the coupling was chosen
so as to magnify the role of next-nea-
rest-neighbor exchange, the data ex-
ceed the Poisson distribution norma-
lized analogously. The best expo-
nential fit which would probably
show some lack of events near s = 0
was not performed. It is clear, how-
ever, that the data are not consistent
either with the Wigner distribution
given by the random matrix theory
since there is no indication of the
strong level repulsion.

The results concerning the se-
cond statistical measure A,(L) (the

best fit of the spectral straircase
function by a straight line on a fixed
interval) are plotted in Fig.3. The
error bars were obtained by varying
the positions of the ends of the
interval on which the spectral
rigidity was calculated.

In cases (a—b) the data display
behavior intermediate between the

1
Poisson distribution 5L and GOE
predictions (Fig.3a—b). Within the
interval 6 < L < 11 the A(L) values

of the integrable cases are closer to
the Poisson line than to the GOE
one. In the whole range of L = 6 they

Fig.3. The spectral rigidity A,(L) for the same
three cases as in Fig.2. The solid and dashed
lines show the Poisson and GOE distributions
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exceed systematically the corresponding values for the interaction of the
form (5) at A = —1 (Fig.3c). The latter show a tendency to be more con-
sistent with GOE than with the Poisson form of the A;(L) measure.

4, Discussion

The reasons for the ambiguity of the results listed and briefly discussed
above seem to be twofold. First, the systems of S = 1/2 spins are of an ex-
treme quantal nature. A certain classical analog, of course, can be const-

ructed in the limit S - « by replacing quantum operators {S( Sz)_'/ 2} by
the vectors on unit sphere as was done in [23 ] for two-spin system but the
treatment of higher spins may lead to the loss of integrability. Second, even
in classical mechanics there are examples demonstrating the ambiguities of
numerical analysis. More than ten years ago the authors of ref. {24 ], after
studying Poincare sections in a very wide range of energies,claimed that the
transition from the exponential Toda to Morse pair potential conserves in-
tegrability in a three-particle problem on a line. There has so far not been
any analytic support for such a claim.

The intermediate character of the P(s) and A,(L) behavior was reported

earlier in the paper [8 ] devoted to a simple mechanical system with two deg-
rees of freedom. It was also found in the study of quantum billiards on the
pscudosphere by using a much more extensive set of levels (25 ].

In conclusion, we should mention that our results do not indicate a
sharp transition from the «regular» to «chaotics regime under variations of
the form of exchange interaction in a spin lattice model. The tendency to the
GOE statistics can be seen in the case (4) atA = —1 which seems to be non-
integrable. Perhaps the whole integrability problem for this type of model
cannot be completely disentangled by statistical analysis of level sequences.

The authors are greatly indebted to Mr.Salmaso for his computational
assistance.
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